Grade 7

ANGLES, LINES AND TRIANGLES

NAME

\qquad

CLASS

TABLE OF CONTENTS

Page

1. Rotations 1
2. Classification (kinds) of angles 5
3. Lines 6
4. Measuring and constructing angles 9
5. Naming angles 12
6.

Triangles
17
7. Classification of triangles 18

Mixed Examples 22

1. ROTATIONS

We often turn things or parts of things. Today you may have:
Turned a doorknob
Turned a water tap on and off
Unscrewed the cap of a toothpaste tube
Turned your head to look at the person beside you
1.1 What other things turn, rotate, revolve or spin?

A rotation is a mathematical term for a turn.
It has a centre (or point) of rotation, a direction of rotation (clockwise or anticlockwise) and a size of rotation measured in degrees.
 3000 to 2000 BCE and were great astronomers) choosing 360° ?

\qquad
1.3 How many degrees is half of one rotation?

1.4. How many degrees is a quarter of one rotation?
1.5 Through how many degrees would you turn in going:

From facing \mathbf{N}, turning clockwise to face \mathbf{S}

1.6 Through how many degrees would you turn in going:
N
NE

From facing \mathbf{N}, turning clockwise to face $\mathbf{N E}$ \qquad

From facing NE, turning clockwise to face \mathbf{S} \qquad

From facing S, turning anticlockwise to face SW \qquad

From facing SW, turning clockwise to face NW \qquad

From facing SW, turning anticlockwise to face NW \qquad
1.7 In which direction would you be facing:

From facing N , turning anticlockwise 45° \qquad

From facing NE, turning clockwise 270° \qquad

From facing S, turning clockwise 225° \qquad W

From facing SE, turning anticlockwise 90° \qquad

From facing W, turning clockwise 135° \qquad

OPTIONAL

A sewing machine makes 3 stitches for every turn of the flywheel.
1.8 How many degrees does the flywheel turn when the machine makes:
\qquad
6 stitches

2 stitches
13 stitches
\qquad
\qquad
1.9 How many stitches does the machine make when it turns:
1800° \qquad 480°
960° \qquad

1.10 Through how many degrees does the minute hand of a clock turn in:

1 hour \qquad 3 hours \qquad 30 mins \qquad 5 mins \qquad 1 min \qquad
1.11 Through how many minutes does it take the minute hand of a clock turn:
60° \qquad 270° \qquad 720° \qquad 54° \qquad
3° \qquad
1.12 Through how many degrees does the hour hand of a clock turn in:

1 hour \qquad 3 hours \qquad 7 hours \qquad 14 hours \qquad 30 mins \qquad
1.13 Through how many hours does it take the hour hand of a clock turn:
120° \qquad 180° \qquad 720° \qquad 330° \qquad 45° \qquad
1.14 What is the angle between the hands of a clock at:
3,00am \qquad 15:00 \qquad 5,00pm \qquad 6,00am \qquad 12,30am \qquad 3,30pm \qquad 21:00 \qquad 05:30 \qquad 07:00 \qquad 12:00 \qquad
1.15 What is the direction (clockwise or anticlockwise) and the estimated number of degrees of the rotation when you:

Turn right at a traffic light \qquad
Unlock your front door \qquad
unscrew the top off a bottle \qquad
Turn on the oven to 180°
1.6 Estimate the sizes of the following rotations and write your answer in the rotation:

1.7 Use the line given to draw estimations of the following rotations (angles):

ANGLES

An object rotating about a point, rotates through an angle.
2. CLASSIFICATION (KIND) OF ANGLES

When a line is turned through a quarter of a whole rotation, the angle formed is called a right angle. Right angles are marked with a little square.

2.1 Give some examples of right angles:
\qquad
\qquad
\qquad
\qquad

An acute angle is less than 90°
A right angle is 90°
An obtuse angle is between 90° and 180°
A straight angle is 180°
A reflex angle is between 180° and 360°
A revolution is 360°
2.2 Classify the following angles:
48°
3°
359°
152° \qquad 194°
91°

3. LINES

Two straight lines that intersect (cut) at right angles are perpendicular to each other We write $A B \perp C D$.
3.1 Give some examples of perpendicular lines:
\qquad
\qquad
\qquad
\qquad

B
3.2 Name all the pairs of perpendicular lines in the following:

\qquad

3.3 Use your set square and ruler to copy the following:

Lines which are the same distance apart and cannot meet are parallel to each other.
We write $A B \| C D$ and indicate that the lines are parallel with arrow heads.
3.4 Give some examples of parallel lines:
\qquad
\qquad
\qquad
\qquad
3.5 Name all the pairs of parallel lines in the following:

Lines which are parallel to the horizon are called horizontal.
3.6 Give some examples of parallel lines:
\qquad

Lines which are perpendicular to the horizontal are called vertical.
3.7 Give some examples of vertical lines:

4. MEASURING AND CONSTRUCTING ANGLES

The protractor has two scales: an outer scale going from $0^{\circ} \rightarrow 180^{\circ}$ clockwise and an inner scale going from $180^{\circ} \rightarrow 0^{\circ}$ anticlockwise.

The centre of the protractor is placed at the centre of rotation with a zero line on one line. Every angle can be measured in 2 ways:
using the inner scale using the outer scale

Textbook Exercise:

Platinum Maths Gr 7 Ex 4.3 page 39
4.1 Measure the following angles accurately and record the sizes of the angles:

4.2 Use the line given to accurately draw the following angles:
125°

162°

5. NAMING ANGLES

Any of lines OA, OB or OC can be rotated clockwise or anticlockwise about O onto any of the other lines. The rotations are the angles at O and point O is called the vertex of these angles.

To distinguish the various angles at O we write:

AÔB or BÔA or x
BÔC or CÔB or y

$\mathrm{A} \widehat{\mathrm{C}} \mathrm{C}$ or $\mathrm{C} \widehat{\mathrm{O}} \mathrm{A}$ or $x+y$
5.1 Consult the diagram alongside and complete the following:
The vertex of the angle in this figure is \qquad
and it can be named \qquad
or \qquad
A

5.2 Using the diagram below:

5.2.1 Name, using capital letters:

5.2.2 Name, using one lower case letter or the sum of lower case letters:

CÂD \qquad
BĈA \qquad
A \widehat{D} \qquad
BĈD \qquad
5.3 Using the diagram below:

5.3.1 Name, using capital letters:
5.3.2 Name, using one lower case letter or the sum of lower case letters:
b
e \qquad
$b+c$ \qquad

MÔP
MNिP
MQ̂P \qquad
$N \widehat{P Q}$ \qquad
MN̂Q \qquad
NÔP
5.4 In the following figures, right angles and some other angles are marked.

Calculate the sizes of the marked angles and write the sizes in the angle.
Do not use a protractor.

5.5 Construct the following angles. Label each angle using three point notation.
$\mathrm{ABC}=132^{\circ}$
$\mathrm{P} \widehat{\mathrm{N}} \mathrm{A}=243^{\circ}$

$$
\mathrm{C} \widehat{E} D=326^{\circ}
$$

$$
X \widehat{Y} Z=29^{\circ}
$$

5.6 Use the lines below to draw and label the given angles. Note the position of the vertex of each angle.

$$
\mathrm{MO} P=56^{\circ}
$$

$\mathrm{TŜ} \mathrm{R}=284^{\circ}$

$\mathrm{BDA}=105^{\circ}$
$Y \widehat{X} Z=302^{\circ}$

5.7 Complete the table below the following sketch:

Angle	Classification	Estimate in degrees	Size
$\mathrm{C} \widehat{\mathrm{BD}}$			
$\mathrm{D} \widehat{\mathrm{B} E}$			
$\mathrm{~A} \widehat{\mathrm{BD}}$			
$\mathrm{C} \widehat{B}$			
reflex $\widehat{\mathrm{B} E}$			

5.8 Complete the table below the following sketch:

Angle	Classification	Estimate in degrees	Size
$\mathrm{A} \widehat{B} C$			
D $\widehat{A} C$			
Bत̂D			
AĈD			
reflex $\mathrm{D} \widehat{\mathrm{A}} \mathrm{B}$			

5.9 Complete the table below the following sketch:

Name Lower case	Name 3 capitals	Classification	Estimate in degrees	Size
w				
x				
y				
$w+t$				
	D $\widehat{B} C$			
	B $\widehat{\text { D }}$			
	A \widehat{C}			
	A $\widehat{\text { D }}$			

6. TRIANGLES

6.1 What is the sum of the angles of a triangle?

$$
a+b+c=?
$$

If the angles of the triangle were to be cut along the broken lines as shown below:

And the vertices are then arranged as shown below:

The 3 angles would form a straight line.
$\therefore a+b+c=$ \qquad ${ }^{\circ}$
6.2 On a piece of coloured paper construct a triangle of your own and mark the angles in a similar manner.
Cut out each of the angles of the triangle and stick them around the point on the straight line below.

7. CLASSIFICATION OF TRIANGLES

7.1 Carefully cut out all the triangles on the pink coloured sheet provided at the end of the booklet. Sort them into groups and explain how you formed the groups.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Triangles are classified according to their angles and their sides.

Triangles are:
acute angled if all its angles are acute. right angled if one angle is a right angle. obtuse angled if one angle is obtuse.

Triangles are:
scalene if none its sides are equal.
isosceles if two of its sides are equal.
equilateral if all of its sides are equal.
7.2 Now paste the triangles you cut out into the blocks below and classify each of them.

而		

7.3 How many lines of symmetry does a scalene triangle have?
7.4 How many lines of symmetry does a isosceles triangle have? \qquad
7.5 How many lines of symmetry does an equilateral triangle have? \qquad

To name a triangle we write $\triangle \mathrm{ABC}$
Equal sides are marked.

7.6 Name and classify the following triangles:

7.7 As accurately as possible draw:
an obtuse angled, scalene triangle
an acute angled, isosceles triangle
a right angled, isosceles triangle
an acute angled, scalene triangle
an obtuse angled, isosceles triangle a right angled, scalene triangle a right angled, equilateral triangle

MIXED EXAMPLES

Question 1

1.1 Name:

the line parallel to $A B$
the line perpendicular to $A B$
the line equal to CF
the angle marked x
a right angled triangle

1.2 Classify:

FEED
$\Delta \mathrm{CFD}$
1.3 Measure:
reflex ABD
line CE

Question 2

2.1 Name, using capital letters:
b
$h+i$
2.2 Name, using small letters:

DBE
DÊC
2.3
2.3.1 Name one pair of parallel lines.
2.3.2 Name one pair of perpendicular lines.
2.4 Classify
$\triangle A B C$
Δ FEC
2.5 Measure

AFE
reflex FĈE

Question 3

3.1 Use capital letters to name:
a
$e+d$
3.2 Use small letters to name:

EÂD
ADC
3.3 Complete by naming a line:
$B C=$
AE \|
$A B \perp$
3.4 Classify:
$\triangle \mathrm{ABD}$
3.5 Using the letter m, indicate reflex $\widehat{\mathrm{ABD}}$ on the diagram.

Question 4

4.1 Complete by naming a line:

PW \perp
QT \|
$R T=$
4.2 Using small letters name:

QRT

ST̂Q
4.3 Name using capital letters:
h
$e+g$
4.4 Classify:
$\Delta R Q T$
4.5 Measure:

SR̂T
reflex S $\widehat{P} W$

Question 5

5.1 Name a pair of perpendicular line segments.
5.2 Name a pair of parallel line segments.
5.3 Name, using small letter(s):

BDE
FÂB
5.4 Name, using capital letters:
p
$r+t$
5.5 What kind of angle is:

BÂF
AÊF
5.6 Classify $\triangle \mathrm{AFE}$
5.7 Measure the size of:

BĈD
AF̂E
reflex $\mathrm{FA} B$
line $A B$

